Search results for "crystal field"

showing 10 items of 20 documents

Measuring the magnetic dipole transition of single nanorods by spectroscopy and Fourier microscopy

2020

International audience; Rare-earth doped nanocrystals possess optical transitions with significant either electric or magnetic dipole characters. They are of considerable interest for understanding and engineering light-matter interactions at the nanoscale with numerous applications in nanophotonics. Here, we study the 5 D 0 → 7 F 1 transition dipole vector in individual NaYF 4 : Eu 3+ nanorod crystals by Fourier and confocal micro-scopies. A single-crystal host matrix leads to narrow emission lines at room temperature that permit separation of the Stark sublevels resulting from the crystal-field splitting. We observe a fully magnetic transition and low variability of the transition dipole …

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetic dipole transitionNanophotonicsGeneral Physics and AstronomyPhysics::OpticsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsDipoleCrystal field theory0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]NanorodEmission spectrum010306 general physics0210 nano-technologySpectroscopyMagnetic dipole
researchProduct

Electron Spin Resonance study of charge trapping in α-ZnMoO4 single crystal scintillator

2015

The origin and properties of electron and hole traps simultaneously appearing in a-ZnMoO4 scintillator after X-ray irradiation at low temperatures (T < 35 K) were studied by Electron Spin Resonance (ESR). ESR spectrum of the electron type trap shows pronounced superhyperfine structure due to the interaction of electron spin with nuclear magnetic moments of 95,97Mo and 67Zn lattice nuclei. Considering the nearly tetragonal symmetry of the center this allows us to identify the electron trap as an electron self-trapped at the (Mo(1)O4) 2 complex. Nearly 60% reduction of the spin–orbit coupling at the Mo(1) ion is caused by the overlap of the Mo and ligand oxygen orbitals indicating an essentia…

02 engineering and technologyElectronCharge trapsElectron Spin Resonance010402 general chemistry01 natural sciencesIonlaw.inventionInorganic ChemistryDelocalized electronTetragonal crystal systemAtomic orbitallawElectrical and Electronic EngineeringPhysical and Theoretical ChemistryElectron paramagnetic resonanceSpectroscopyZinc molybdateChemistryOrganic ChemistryScintillator021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystal field theoryAtomic physics0210 nano-technologySingle crystalOptical Materials
researchProduct

Study of the thermochromic phase transition in CuMo1−xWxO4 solid solutions at the W L3-edge by resonant X-ray emission spectroscopy

2021

Abstract Polycrystalline CuMo 1 − x W x O 4 solid solutions were studied by resonant X-ray emission spectroscopy (RXES) at the W L 3 -edge to follow a variation of the tungsten local atomic and electronic structures across thermochromic phase transition as a function of sample composition and temperature. The experimental results were interpreted using ab initio calculations. The crystal-field splitting parameter Δ for the 5d(W)-states was obtained from the analysis of the RXES plane and was used to evaluate the coordination of tungsten atoms. Temperature-dependent RXES measurements were successfully employed to determine the hysteretic behaviour of the structural phase transition between t…

010302 applied physicsPhase transitionMaterials sciencePolymers and PlasticsMetals and AlloysAnalytical chemistrychemistry.chemical_element02 engineering and technologyAtmospheric temperature rangeTungsten021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialschemistryAb initio quantum chemistry methodsCrystal field theory0103 physical sciencesCeramics and CompositesCrystalliteEmission spectrum0210 nano-technologySolid solutionActa Materialia
researchProduct

An interpretation of EPR spectra of azide ligated superoxide dismutase from Propionibacterium shermanii

1995

A self-consistent description of the EPR spectra of the azide ligated SOD is obtained by taking into account the general configuration of the crystal field splitting in the crystal field Hamiltonian. The spread in the rhombicity parameter due to the presence of different conformational substates is introduced.

biologyChemistryPropionibacteriumBiophysicsGeneral Medicinebiology.organism_classificationPhotochemistrySpectral linelaw.inventionSuperoxide dismutasechemistry.chemical_compoundCrystal field theorylawCondensed Matter::Superconductivitybiology.proteinAzideElectron paramagnetic resonanceEuropean Biophysics Journal
researchProduct

EPR Studies of Atomic Impurities in Rare Gas Matrices

2003

In this article we give an overview of the matrix isolation technique combined with electron paramagnetic resonance (EPR) detection for embedded atomic impurities in solid rare gases. A special emphasis is put on impurity – matrix coupling effects combining both experimental and theoretical approaches.

Rare gasCoupling (physics)Matrix (mathematics)Crystal field theoryChemistryImpuritylawMatrix isolationCondensed Matter::Strongly Correlated ElectronsAtomic physicsElectron paramagnetic resonancelaw.invention
researchProduct

Rational design and modelling of f-block molecular nanomagnets

2016

Los imanes monomoleculares o moléculas imán, por sus siglas en inglés SMMs, han suscitado una gran atención en los últimos años debido a sus extraordinarias propiedades físicas. Los cristales de este tipo de moléculas se caracterizan por presentar relajación lenta de la magnetización a baja temperatura, así como curvas de histeresis magnética. Estas moléculas se encuentran entre las entidades con comportamiento magnético más complejas, mostrando fenómenos cuánticos tales como efecto túnel en la magnetización, coherencia cuántica o interferencia cuántica. Por esto, se han postulado como candidatos prometedores para el diseño de bits cuánticos (qubits) de espín en computación cuántica. La pri…

UNESCO::FÍSICA::Electromagnetismo ::MagnetismoUNESCO::QUÍMICA::Química inorgánica ::Estructura de los compuestos inorgánicoslanthanides and actinides:FÍSICA::Electromagnetismo ::Magnetismo [UNESCO]:FÍSICA::Física del estado sólido ::Estados electrónicos [UNESCO]:FÍSICA::Física molecular::Moléculas inorgánicas [UNESCO]:QUÍMICA::Química inorgánica ::Estructura de los compuestos inorgánicos [UNESCO]UNESCO::QUÍMICA::Química inorgánica ::Compuestos de coordinaciónUNESCO::FÍSICA::Física molecular::Moléculas inorgánicas:QUÍMICA::Química inorgánica ::Compuestos de coordinación [UNESCO]computational chemistryquantum computingUNESCO::FÍSICA::Física del estado sólido ::Estados electrónicosmolecular nanomagnetism:QUÍMICA::Química inorgánica ::Tierras raras [UNESCO]coordination complexes:QUÍMICA::Química inorgánica ::Compuestos organometálicos [UNESCO]UNESCO::QUÍMICA::Química inorgánica ::Tierras rarasUNESCO::QUÍMICA::Química inorgánica ::Compuestos organometálicoscrystal field
researchProduct

Crystal field splitting of some rare earth intermetallic compounds with Cu3Au structure

1980

Inelastic neutron scattering studies were performed in the paramagnetic phases of several rare earth compounds that crystallize in the cubic Cu3Au structure: ErPb3, ErTl3, ErIn3, HoPb3, HoTl3, HoIn3, PrSn3, PrPb3, PrTl3, PrIn3, CeIn3, La1−c Pr c Tl3, and Pr(In0.5Tl0.5)3. The energies, widths and intensities of the crystal field excitations are determined and discussed in terms of interactions between the rare earth ions. Variations of the crystal field parameters are observed across the series.

CrystalParamagnetismMaterials scienceField (physics)Condensed matter physicsCrystal field theoryRare earth ionsRare earthIntermetallicAtomic physicsCondensed Matter PhysicsInelastic neutron scatteringElectronic Optical and Magnetic MaterialsZeitschrift f�r Physik B Condensed Matter and Quanta
researchProduct

Crystal field calculations of energy levels of the Ni2+ ions in MgO

2013

Abstract The electronic energy levels of six-fold coordinated Ni 2+ ion in magnesium oxide MgO were calculated using the exchange charge model of crystal field theory. The calculated energetic positions of the Ni 2+ levels match well the experimental spectrum. Inclusion of the spin-orbit (SO) interaction is compulsory to account for the first excited 3 T 2g state fine structure; however, it does not explain why out of four levels arising from the 3 T 2g state, only two are seen in the experimental spectra. One possible explanation to this fact can be advanced by invoking the Jahn–Teller effect.

Field (physics)ChemistryMagnesiumBiophysicschemistry.chemical_elementGeneral ChemistryCondensed Matter PhysicsBiochemistryAtomic and Molecular Physics and OpticsSpectral lineIonCrystalCrystal field theoryExcited stateAtomic physicsEnergy (signal processing)Journal of Luminescence
researchProduct

Effects of Crystal Field Splitting and Surface Faceting on the Electronic Shell Structure

1992

The shell structure of the valence electrons is clearly observed in all alkali and noble metal clusters containing up to hundreds of atoms[1 – 4]. It is seen in the abundances of the clusters, in the ionization potential and in the polarizability. The shell structure of the valence electrons is closely related to the shell model of nuclei, but is simpler owing to the negligibly small spin-orbit interaction. The ability to produce all sizes of metal clusters has made the metal clusters a test ground for the super-shell structure[5].

Surface (mathematics)Materials scienceNuclear Theoryengineering.materialAlkali metalMolecular physicsFacetingCrystal field theoryPolarizabilityPhysics::Atomic and Molecular ClustersengineeringCondensed Matter::Strongly Correlated ElectronsNoble metalIonization energyAtomic physicsValence electron
researchProduct

Electronic Shell Structure and the Crystal Field Splitting in Simple Metals Clusters

1991

An upper limit for the number of atoms in metal clusters capable of exhibiting electronic shell structure has been estimated by comparing the energy difference between the highest occupied and the lowest unoccupied state with the crystal field splitting. The former is obtained by solving the Schrodinger equation for a spherical potential well with hard walls while the latter is obtained from the band structure of the solid. The results indicate that shell structures may persist in clusters containing as many as a million atoms.

Materials scienceCondensed matter physicsShell (structure)General Physics and AstronomyElectronic structureMolecular physicsSchrödinger equationsymbols.namesakeFourier transformCrystal field theoryPhysics::Atomic and Molecular ClusterssymbolsCluster (physics)Perturbation theoryElectronic band structureEurophysics Letters (EPL)
researchProduct